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Abstract—Ubiquitous projection is the recent effort that tries 
to close the gap between the physical world and the virtual 
world by using a mobile projector. Using a projector and 
camera together has a conflict of preferred light conditions, 
making it difficult to implement a robust visual detector while 
retaining ubiquity. In this paper, we focus on techniques of 
visual object detection for a portable projector-camera system. 
The goal is to create a visual detector that requires no guidance 
from a user and is robust to different light conditions. Our 
investigation involves the multiscale concept using Canny edge 
detection as a representative detector. Five image 
simplification filters applied to the multiscale detection are 
examined for both accuracy and speed. In addition, 
preprocessing using histogram equalization and postprocessing 
are applied to ensure robustness in a real-world scenario, and 
to guarantee that the detection will always successfully detect 
objects using a constant set of parameters defined offline. 
Finally, we showed that using multiscale detection in a parallel 
manner can speed up the detection while not affecting the 
accuracy of the detection. 

I. INTRODUCTION 
Because of the trend in mobile projector phones, people 

have started to imagine using mobile projectors ubiquitously 
in the same way as mobile phones. A good ubiquitous 
system is a matter of mobility and intelligence. While the 
mobility of a projector has recently been successfully 
proposed, intelligent mobile projection has not yet been 
accomplished in practice. In this paper, we focus on a 
vision-based ubiquitous projection system that is able to 
perform real-time object augmentation in a robust manner. 

Object augmentation using a projector has been proposed 
continuously in the past decade; for example, see iLamps 
[7], Cao and Balakrishnan [1], CoGAME [2], Molyneaux et 
al. [5], and Kanbara et al. [3]. This trend has become more 
prominent with the proposal of the SixthSense project [4] 
that uses a wearable projector to augment the physical world 
with virtual information projected from a projector. There is 
no doubt that the key success of object augmentation is to 
detect the object correctly. This may sound simple, but it is 
not easy to achieve, as ubiquitous projection implies 
unconstrained environments and dynamic objects. 

Previous works of augmenting objects by projection tend 
to neglect or simplify the detection problem with various 
alternatives that do not meet the goal of being ubiquitous. 

Visual fiducials and IR LEDs are attached to the target 
object in iLamps [7] and CoGAME [2], respectively, for 
visual object detection. Invisible markers need to be 
projected steadily onto a wall or ceiling in [3] and a 
stationary camera is required in the workspace for 3D 
position tracking in [1]. In other words, these works are not 
automatic and ubiquitous yet, because they either modify 
external appearances of the object or require at least one 
stationary device. In SixthSense [4], color markers are used 
for some object detection tasks but it is not clear how the 
visual object detection is performed in the rest of the system. 
The cooperative augmentation proposed by [5] seems to be 
the appropriate solution for real-time object augmentation in 
ubiquitous projection. The projector-camera (i.e., pro-cam) 
system dynamically configures its visual object detection 
based on four different detection algorithms that ensure 
detection coverage in a real-world scenario. However, this 
system relies on an assumption of the smart object where 
object-model knowledge must be embedded during 
manufacture. 

The pro-cam system using visual object detection is often 
the choice for researchers in this field. It allows object 
augmentation everywhere without relying on separate 
tracking hardware, and a user can interact directly with the 
projection. Nevertheless, there is a conflict using projection 
and visual detection together. Projection requires a dark 
environment for better visualization of the projected images 
on the surface. In contrast, the visual object detection 
algorithm usually prefers input images captured in a bright 
environment so that the sharp details of objects are obtained 
with few additive noises. Combined with the fact that visual 
appearances of the object can be changed easily by the 
surrounding light conditions, the problem of visual object 
detection becomes more challenging for a ubiquitous pro-
cam system. 

So far, researchers in the field of ubiquitous pro-cam 
systems focus on developing new interactive techniques but 
pay scant attention to the fundamental problem of how to 
appropriately deal with the difficulties of lighting in a real-
world scenario. In this paper, we closely investigate visual 
object detection using a ubiquitous pro-cam system. The goal 
is to accomplish an unsupervised visual object detection 
scheme that retains absolute ubiquity in a pro-cam setup and 
is able to reliably detect objects inside the projector’s 
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frustum, regardless of extremely low light condition or 
significantly changing the amount of light. Contributions of 
this paper can be applied to other vision-based pro-cam 
systems to ensure robust object detection that tolerates 
surrounding light conditions. By simply replacing the 
representative detector used in this paper (Canny edge 
detector) with an appropriate visual detector, various object 
detections can be achieved for further use in object 
augmentation. We strongly recommend a reader to look at 
the digital copy of this paper because some fine details 
cannot be seen when printed onto a paper. 

II. PRO-CAM DESIGN FOR GEOMETRY-BASED 
UBIQUITOUS INTERACTIONS 

This section briefly describes our main focus, which is 
the beam splitter-based scenario described in [8], where the 
fundamental lighting difficulties mentioned above are 
significantly underlined. In the design proposed by [8], 
available light as seen by the camera is very limited for two 
reasons. First, the beam splitter used to coaxialize the 
projector and camera allows only 50% of the environment 
light to be reflected to the camera lens. Second, the design 
refers to pro-cam synchronization where the camera is set to 
expose for a very short period (i.e., less than 1 ms). 
Consequently, the projector’s red light is the only light 
source illuminating the projection surface, and small 
changes in distance from the projector to the object, or slight 
depth variation, can result in considerably increasing or 
decreasing the amount of light as seen by the camera. 

Advantages of this design are specifically for geometry-
based interactive projection in a ubiquitous system. Not 
only is the geometric mapping between the projector and 
camera coordinates independent from the surface because of 
the coaxialization, but also the projected augmentation will 
not be seen by the camera. In other words, this design 
allows the use of conventional visual object detection, and 
the detection and projection can be performed 
simultaneously. As shown in Fig. 1, the design in [8] can 
detect the true object correctly (Fig. 1D and 1G) while a 
normally set camera cannot  (Fig. 1C and 1F). The 
limitation of this design is that the projected colors must be 
converted to a specific set of colors. This can be seen in Fig. 
1A where all projected colors are limited to the red 
highlights. 

All input images used in the rest of this paper are 
captured by this pro-cam design, as this best emphasizes the 
problems of a ubiquitous pro-cam device. 

III. MULTISCALE VISUAL OBJECT DETECTION 
In this section, we explain our investigation for 

unsupervised visual object detection. Unlike color and 
texture, edges generally present across any type of visual 
content. Hence, Canny edge detection provided by the 
OpenCV library [6] is used as a representative base detector 
in this paper; 1λ , 2λ , and σ  represent values of two Canny 
thresholds and aperture size, respectively. Note that all input 

images used in this paper are unsigned 8-bit RGB images. 
For ideal visual object detection, one would like to extract 

automatically all edges belonging to the true objects. 
However, in an unconstrained environment, no matter what 
detector is used, its output tends to miss some true objects 
(a.k.a. undersegmentation) or include false edges belonging 
to noises (a.k.a. oversegmentation). Considering a single 
input image, it is always possible to achieve an acceptable 
detection result by fine-tuning parameters of the detector. 
An example is shown in Fig. 2, where the appropriate set of 
parameters is different in the three input images. The 
darkest image needs the parameters providing highly 
sensitive edge detection to extract low-contrast edges. 
However, using the same set of parameters in the brighter 
images produces oversegmented results. 

Adjusting these parameters manually during real-time 
object augmentation is not preferred. Therefore, we closely 
investigated this problem and conducted experiments to 

 

Figure 1.  (B) An environment seen by the normal camera. (C) and (D) 
show environment (B) as seen by the normal camera and the 
synchronized camera (according to [8]), respectively, while (A) is being 
projected from the projector. (E), (F) and (G) are Canny edge detection 
results of (B), (C) and (D), respectively. 

 

 

Figure 2.  Comparison of visual object detection of three images with 
different illuminations. The first column shows images captured by the 
synchronized camera (according to [8]). The second, third and fourth 
columns are Canny edge detection results using ),,( 21 σλλ equal to 
(127, 1000, 5), (127, 500, 5) and (127, 200, 5), respectively. 
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ensure that acceptable detection results will always be 
achieved with a single set of predefined parameters, 
regardless of different light conditions. After some surveys, 
we decided to use the multiscale concept to compensate the 
oversegmented result with the undersegmented result and 
vice versa. The reasons that we chose this concept are as 
follows: (1) it is easy to implement because no internal 
modification is required in the base detector, (2) it is flexible 
because the base detector can be replaced easily with other 
visual detectors to match individual requirements, and (3) 
increases in computation can be offset by the recent growth 
of multicore processors and parallel programming languages 
(as described later in Section III.D). 

An overview of the investigated detection scheme is 
shown in Fig. 3. The detection involves three main steps: 
preprocess, multiscale detection, and postprocess. Section 
III.A explains the preprocess step, including our 
experimental results on the appropriate histogram 

equalization value. Section III.B shows in detail how we 
obtain the scale map from the multiscale concept (using the 
conventional sequential implementation), and how different 
smoothing filters affect the detection results. Section III.C 
then describes the postprocess step that converts the gray 
scale-map to the binary edge-map and fixes some special 
cases. Finally, Section III.D presents an alternative 
implementation using parallel programming to improve 
performance. The investigated detection scheme is 
automatic and involves no user feedback, training or 
supervision during online execution. 

A. Preprocess: Histogram equalization 
The purpose of this step is to standardize the input image 

so that it is ready for the next detection step. From our 
experiments, using only the multiscale concept is not 
enough to achieve an unsupervised detection; adjusting 
parameters of the base detector is still required when dealing 
with differently illuminated input images. Hence, we 
concluded that the input images need to be standardized first. 
The investigated preprocess includes extracting the 
luminance component of the input image and performing 
histogram equalization. 

Instead of using the RGB format, we convert the image to 
YUV format and use only the Y (luminance) component in 
further calculations. This is related to the observation that 
human eyes are far more sensitive to luminance than color. 
Because our input images (as well as other pro-cam systems 
operating in a dark environment) suffer from insufficient 
amounts of light, histogram equalization is a straightforward 
technique to improve the overall appearance of the images. 
Histogram equalization is a technique that enhances an 
image by equalizing its histogram, and is usually used to 
enhance contrast of an image. Generally, this term refers to 
expanding the pixel values within an image to fill the entire 
0–255 spectrum in its histogram. 

 

Figure 3.  Overview of the investigated multiscale visual object detection. The Gaussian smooth filter is used in this figure. 

 
 

Figure 4.  Effect of histogram equalization. Top-left is the original 
luminance component of the input image. The others are the luminance 
image whose histogram is equalized with a different range of spectrum 
(written in white digits). Corresponding histograms are drawn in red at 
the bottom-left of each image. 

631625



As shown in the top row of Fig. 4, the original histogram 
of the luminance image occupies narrow ranges in the entire 
spectrum and equalizing it obviously improves the 
visualization. However, there is an issue caused by the 
increase of textural noises. The more the histogram is 
changed, the more distinct textural noises become, which 
may affect future visual detection. The textural noise in this 
context refers to the texture that does not really exist but is 
added by using the histogram equalization to strongly 
enhance the image. An example of textural noises can be 
seen in the equalized image of range 0–255 in Fig. 4. 
Decreasing the strength of enhancement reduces visibility of 
the textural noises, as shown in the bottom row of Fig. 4. 
Nevertheless, because luminance of the input image is 
unpredictable, we decided to equalize the histogram to cover 
the entire spectrum (i.e., 0–255) as the standard. Effects of 
textural noises will be resolved later in the multiscale 
detection step. 

B. Multiscale detection: Smoothing filters 
In this context, multiscale detection refers to a hierarchy 

of detections where an original image is simplified through 
iterations of a smooth filter as illustrated in Fig. 3 ( Gσ  is 
the size of the square Gaussian kernel used in the Gaussian 
smooth filter). The idea is to use a smooth filter (with 
constant parameters) to decrease iteratively “too detailed” 
information from the original image so that only the 
information belonging to the true objects survives in the last 
scale. By applying the base detector with the constant set of 
parameters to the simplified image in each scale, we can 
combine all detection results to a single output using a 
weighted summation. Suppose that N is the number of 
scales and i is an index of each scale, i equal to 1 refers to 
the highest scale (maximum detail but least importance), i 
equal to N refers to the lowest scale (minimum detail but 
highest importance), and the weight assigned to each scale 
is equal to i in this paper. In this way, the high magnitude 
(black) in the combined gray scale-map reflects the high 
probability that this pixel belongs to the true edges. 

Nevertheless, as mentioned in Section III.A, significantly 
equalizing the histogram adds distinct textural noises to 
some images and can result in false positive visual detection. 
Using an appropriate smooth filter to simplify the image is 
important to ensure that these textural noises are not 
emphasized in the detection output. For this paper, we 
experimented on five smooth filters: meanshift, 
conventional bilateral [9], real-time O(1) bilateral [10], 
median and Gaussian filters. Meanshift and bilateral filters 
are edge-preserving smooth filters that offer “posterized” or 
“cartoonized” effects over an input image. Median and 
Gaussian filters are well-known smooth filters usually used 
to reduce noises in an image. 

Assuming that parameters of each filter are adjusted so 
that the best detection result is achieved, Fig. 5 shows the 
gray scale-maps obtained by applying the five filters over 
the same histogram-equalized image in the multiscale 

manner; the number of scales (N) is 4 and the parameters of 
Canny edge detection are set to 1000,127 21 == λλ  and 

5=σ  in all experiments. From Fig. 5, it is obvious that the 
meanshift and median smooth filters emphasize the textural 
noises in the scale maps; the conventional bilateral and 
Gaussian smooth filters offer the cleanest and nicest edges. 
Compared with the conventional bilateral filter [9], the real-
time O(1) bilateral filter [10] can filter out equally the 
textural noises, but does better in preserving edges and 
enhancing image contrast (the result regarding this issue is 
not shown in this paper). However, its results are distracted 
by noise pixels inside the object so that continuous contours 
of the objects are barely achieved. Note that only the area 
inside the projector frustum is considered here. 

Furthermore, we examined the computational time used 
by each filter. Under the same constraints, the computation 
time used per one smoothing execution (without iteration) is 
30, 63, 65, 18, and 15 ms for meanshift, conventional 
bilateral [9], real-time O(1) bilateral [10], median, and 
Gaussian filters, respectively. Because our input image here 
requires strong smoothing effects to reduce the textural 
noises caused by the histogram equalization, this costs much 
time in the smoothing processes. When dealing with other 
scenarios of less severe light conditions, reducing the 
strength of the smoothing filter is allowed and less 
computation is required. However, considering the time as 
well as the resulting scale map, the Gaussian smooth filter 

 
 

 

Figure 5.  The gray scale-maps of the multiscale Canny edge detection 
(N = 4) using different smoothing filters. Top-left is the preprocessed 
image before the multiscale detection is applied. 
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seems to be the best choice for us. It is not too sensitive to 
textural noises, provides nice contours of the true objects, 
and requires reasonable computational times. 

C. Postprocess 
Up to this point, we have achieved a gray scale-map of 

the multiscale detection. The postprocess step is a simple 
technique of converting the scale map to a binary image and 
fixing some special cases. Converting a grayscale image to a 
binary image is done by using a fixed threshold value so 
that low-magnitude pixels, which usually belong to noise, 
are eliminated from the resulting edge map. 

Our experiments revealed that the proposed multiscale 
detection sometimes fails to extract true edges because the 
magnitude of true edges in the scale map is not high enough. 
This refers to the cases when the original input image is 
sufficiently illuminated (e.g., the bottom row of Fig. 2). In 
these cases, equalizing the image histogram degrades the 
image contrast and results in failure of the multiscale 
detection. Setting a lower threshold value during binary 
conversion can solve this problem but will allow more 
noises in other images of lower luminance. 

We solved this problem by applying the patch image to 
the binary scale-map, and fulfilling missing edges. The 
patch image is a binary edge image obtained by applying the 
base detector with constant parameters (i.e., Canny edge 
detector with 500,127 21 == λλ , and 5=σ ) directly to the 
input image without any preprocessing. Because the input 
images focused in these cases are well illuminated, the 
direct detection result is always clean and accurate (as 
shown in the third column of the bottom row in Fig. 2). As a 
result, it may be said that true edges are detected in any 
arbitrary light condition. Note that this patch image does not 

affect other insufficiently illuminated input images because 
parameters used in this patch detection are not sensitive 
enough to obtain edges in the low-contrast input, as shown 
in the (edge) patch image of Fig. 3. Besides, the patch image 
may not be required if using base detectors other than the 
Canny edge detector. 

D. Parallel implementation 
The multiscale detection described in Section III.B 

involves a conventional implementation that sequentially 
passes the simplified image from the higher scale to be the 
input image in the lower scale. Therefore, the total number 
of scales is the key factor to determine the computational 
time of the detection. From our experiments, four scales are 
adequate; however, the processing time of 137 ms per one 
frame (based on the Canny edge detector and the Gaussian 
smooth filter) is far from being a real-time interactive 
system. 

Considering recent growth in multicore processors and 
parallel programming languages, we changed the sequential 
implementation to the equivalent parallel implementation. 
The concept of our parallel implementation to the multiscale 
visual detection is illustrated in Fig. 6. The preprocessed 
image is distributed simultaneously to all scales. Instead of 
using the same smoothing parameters as the sequential 
implementation, the parallel implementation increases the 
smoothing effect by enlarging directly the value of Gσ  used 
in each scale. Our experiments presented in Fig. 6 show that 
the parallel implementation offers similar multiscale 
detection outcomes compared with the sequential 
implementation. In this way, speed of detection can be 
improved significantly with few modifications. 

IV. EXPERIMENTAL RESULTS 
In this section, we discuss experiments conducted to 

evaluate the proposed detection scheme. All experiments 
were performed using an HP Pavilion dv5 Notebook PC 
with an Intel® Core™2 Duo CPU P8600 running at 2.40 
GHz. All images were captured from the beam splitter-
based design described in [8] and the projector's focus was 
adjusted manually in all experiments. 

First, we investigated performance of the proposed 
scheme using the parallel implementation in differently 
illuminated images. Fig. 7 shows the experimental results. 
All experiments share the same settings (i.e., N = 4 and Gσ  
= 7), and no further parameter adjusting is performed in 
each experiment. According to Fig. 7, it can be seen that the 
proposed scheme is capable of detecting true edges inside 
the projector frustum area in all images. Noise edges are 
visible inside the detected objects given the reflection of the 
projector’s light upon the object’s surface. As mentioned 
earlier, the proposed approach can be applied to other pro-
cam systems, regardless of the design in [8]. Nevertheless, 
some parameters may need to be reconsidered offline to 
ensure that the smoothing strength and the detector’s 

 

Figure 6. Overview of the investigated multiscale visual object detection 
using a parallel implementation. The Gaussian smooth filter is used in 
the multiscale detection. 
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sensitivity are set appropriately. 
To determine the speed efficiency of the parallel 

implementation, Fig. 8 shows the computational time used 
during the multiscale detection in the sequential and parallel 
implementations versus the number of scales (N). Our 
parallel implementation used the OpenMP parallel 
programming architecture. Therefore, the parallel capability 
is limited to our Core™2 Duo CPU. According to Fig. 8, the 
times used by the sequential implementation increase 
linearly while the times seem to increase exponentially in 
the parallel implementation. The parallel implementation 
uses less time than the sequential does when the number of 

scales is less than 8. This can be explained by the concept of 
parallel programming in which the ratio of the number of 
data transfers to the number of executed commands must be 
small; otherwise, executing in a sequential manner on a 
single CPU is faster. Higher numbers of scales offer more 
stable detection results; however, finding appropriate values 
of smoothing and thresholding may be troublesome. From 
our experiments, the number of scales from four to six is 
adequate and provides good balance between detection 
accuracy and computational time. Hence, using OpenMP 
programming with a recent processor providing more than 
two cores should allow for easy acceleration and show 
clearer differences between times used by the two 
implementations. Another alternative is to use GPU 
programming, but major reimplementation of the existing 
program may be required. 

V. CONCLUSION 
In this paper, we explained problems of using visual 

detection in a portable pro-cam system and investigated a 
multiscale visual detection scheme as a solution for robust 
object augmentation applications (especially those operating 
in a dark environment). The proposed scheme can be used 
for any vision-based pro-cam application to ensure that 
good detection results are achieved automatically without 
the user’s guidance regarding light variation in the 
environment. The investigation mainly involves a sequential 
multiscale implementation with five different smoothing 
filters, histogram equalization, and alternative parallel 
algorithm implementation. The representative based 
detector used in this paper is the Canny edge detector, but it 
can be replaced with other visual detectors with behaviors 
that match the requirements of a specific pro-cam object 
augmentation application. 
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Figure 7.  Images in the left column were captured by the beam splitter 
based pro-cam design proposed by [8]. Images in the middle column are 
the preprocessed images. Images in the right column result from Canny 
edge detection using the proposed multiscale approach with parallel 
implementation. 
 

 
Figure 8.  Relationship between the computational time (per one input 
image) and the number of scales (N) using the sequential and parallel 
implementation of the proposed detection scheme. 

634628


