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Abstract 

With the recent growth in projection technologies, interactive 
applications using portable projectors have received attention 
from research communities. However, almost all applications 
are limited to controller-centered interactions and few pay 
attention to the existence of other objects found in an 
environment. In this paper, we propose an object-centered 
interactive system using a single self-contained device. 
Physical objects are integrated into the system so virtual 
objects projected by a projector can respond to them in a 
realistic manner. The device consists of a portable projector, 
a FireWire camera, a motion sensor and a VGA splitter. A 
computational framework for the system is presented in the 
paper. We focus on the three fundamental requirements of the 
system and their solution. First, a projector and a camera 
were geometrically calibrated in real time using a motion 
sensor. Physical objects were then identified and tracked 
using particle filters. Finally, virtual information was 
projected using a nonintrusive projection technique. Two 
basic programs were implemented as proofs of concept, and 
experiments were conducted to evaluate the accuracy and 
speed of the proposed system. 
 
 
Keywords: portable projector, object-centered interaction, 
real-time projector-camera geometric calibration, 
nonintrusive projection, multiple-target tracking using particle 
filters. 

1   Introduction 

Using a projector in human–computer interaction allows 
intuitive interaction by directly superimposing virtual 
information onto a physical surface. In the past decade, a 
number of interactive applications have been developed that 
benefit from projection technologies. With the recent growth 
in portable devices, several new interactive systems have 
been based on a portable projector. However, in a portable 
system, devices and architectures are quite limited. Therefore, 
achieving robust interactions is very challenging. 
 
Many research approaches have proposed an interactive 
application using a portable projector. However, most of these 
do not properly integrate objects found inside an 
environment. Accordingly, interactions are only generated 
from the point where a controller object (e.g., a user’s head, 
hand, or fingers, or a robot equipped with a marker) is found 

to the point hinted at by that controller object. Interactions 
relating to other existing objects are rarely implemented. In 
this paper, we call this kind of interaction “controller-centered 
interaction”. 
 
The concept of controller-centered interaction helps eliminate 
several unpredictable factors in a portable system. 
Nevertheless, it is desirable in practice that a portable system 
should perform appropriately even in an unknown 
environment containing unknown objects. To achieve this, we 
add more information about an environment to our portable 
system. The concept of controller-centered interaction is 
extended to object-centered interaction. The word “object” in 
this context refers to a common object that is not prepared, 
resides in an environment and is neither a controller object 
nor a surface. 
 
To be more specific, the concept of object-centered 
interaction helps merge physical objects found in an actual 
environment into virtual worlds created for projection, so that 
interactions between them can be generated in a realistic 
manner. This concept solves the problem of inappropriate 
projections onto a surface occupied by objects, especially in a 
portable system. When objects inside an environment are 
recognized, it is now up to the system to determine how they 
should be treated. 
 
In our previous work [26], a mobile device was used for 
minor object-centered interactions. However, four color 
markers are required on a surface and the system cannot 
actually project interactions onto the surface because of the 
intrusive-projection problem. The aim of this paper is to 
explore a novel aspect of a single self-contained projection 
device that supports object-centered interactions. We are also 
interested in differentiating objects found in an environment 
and interacting with them uniquely. 
 
Our proposed system is based on a projector-camera paired 
system, also known as a pro-cam system. There are three 
principal aspects to our proposed system. The first is a real-
time geometric calibration to transform camera coordinates to 
projector coordinates and vice versa. The second is multiple-
target tracking for identifying and tracking objects that reside 
in an environment. Finally, nonintrusive projection guarantees 
that projected interactions will be visible to humans but 
invisible to the camera. This is necessary to avoid interference 
(as seen by the camera) that may lead to an incorrect analysis 
of the environment. 
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2   Related work 

As discussed, our achievement is related to three types of 
problem. In the following section, we explain recent advances 
in interactive projector systems and then discuss related 
research in the three areas. 
 
Interactive projector systems: Cotting and Gross [7] 
introduced an environment-aware display system that 
automatically avoids projections onto nonsurface objects. 
Their system performs real-time object detection, but it is 
limited to fixed projectors and cannot differentiate between 
detected objects. Thus, the same interaction is provided to all 
objects. In Cao et al. [5,6], interactive mobile projector 
systems were developed. Their systems project static 
annotations onto registered objects. However, it requires a 
user to register each object manually and includes a camera 
mounted separately in a workspace. In CoGAME [13], 
images projected from a handheld projector act as a robot 
controller. The only object handled by this system is a robot 
attached to three IR LEDs; any other objects are disregarded 
completely. The latest SixthSense prototype [19] is close to 
an ideal interactive portable system and offers meaningful 
interactions with different objects found in the real world. 
However, it focuses on controller-centered interactions where 
the controller objects are fingers equipped with color markers. 
 
Real-time pro-cam geometric calibration: When a projector 
and a camera are rigidly fixed to each other, some assume that 
the geometric registration between them is roughly constant 
[4]. However, as the angle of a projector moves from the 
perpendicular, this approach cannot guarantee good geometric 
registration. Projecting a known pattern onto a surface is a 
classic approach to solve this problem that gives precise 
calibrations for both planar surfaces [10,23,24] and irregular 
surfaces [2,22,28]. However, the computational cost is high 
for a complex surface, and patterns must be re-projected when 
a component of the system (e.g., a projector, camera or 
surface) moves. A real-time approach that does not interrupt 
normal projection was proposed in [16] by attaching four 
laser-pens to a pro-cam system. Although detecting bright 
laser points sounds easier than detecting points projected by a 
projector, locating small laser points in a messy camera image 
is still difficult. In this paper, we chose to apply a real-time 
approach inspired by [9] using only one additional motion 
sensor. Real-time geometric calibration was achieved with a 
single self-contained device. 
 
Multiple-target tracking: Particle filtering [14] has become 
one of the most popular visual tracking algorithms over the 
past decade. One problem with this approach is that particle 
filtering can track only one target at a time. Additional 
algorithms are required to make particle filtering work with 
multiple targets. In former approach, full knowledge of the 
true targets (including when and where they appear and 
disappear) must be provided [18]. Some simplify the 
approach by limiting the maximum number of true targets 
[15]. Unlike these, however, [20] proposed a hybrid approach 

that can track an unlimited number of sensors. This approach 
is very close to our requirement, but cannot be applied 
directly. The computational costs of sensor-based tracking 
and image-based tracking differ too greatly. In this paper, we 
modify several proposals in [20] and achieve a new tracking 
approach that is more suited to image-based tracking. 
 
Nonintrusive projection: This topic is a subset of the 
embedded imperceptible-pattern projection problem. Lately, 
prototypes of an infrared projector were proposed in [1,17] to 
project infrared and visible light simultaneously. An infrared 
pattern is fixed by using an internal mask inside a projector in 
[1], but is variable in [17]. Unfortunately, the work of Lee et 
al. [17] requires many internal changes inside a Digital Light 
Processing (DLP) projector that can be accomplished only by 
a commercial manufacturer. While an infrared projector is 
under investigation, there are existing solutions proposed for 
this problem. For the office of the future [25], embedding 
structured light into a DLP projector can be achieved by 
significant changes to the projection hardware. However, this 
implementation is impossible unless it is incorporated into the 
design of the projector or full access to the projection 
hardware is available. In [12,21,29], a code image is projected 
at high speed with its neutralized image, which integrates the 
coded patterns invisibly because of limitations of the human 
visual system. According to these papers, projecting and 
capturing at 120 Hz can guarantee a hidden code. Commonly 
available projectors usually perform projections at a 
maximum rate of 87 Hz. For this paper, we apply an approach 
proposed in [8], which can be achieved using an off-the-shelf 
DLP projector. 

3   Proposed framework 

The configuration of our system is illustrated in fig. 1. A 
camera and a motion sensor are fixed to a DLP projector, 
forming a single self-contained device. A VGA splitter is 
added for pro-cam synchronization (see Section 3.3 for 
details). 

As shown in fig. 2, the framework supporting our approach 
consists of five main steps. First, the projection area 
appearing inside a camera image is located (Calibration). 

 
 

Figure 1: System configuration. 
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Then, an appropriate algorithm is applied to detect objects for 
interaction (Detection). Next, contours of the detected objects 
are sent to the tracker, so that each object can be labeled 
according to its previous state (Tracking). After this, an 
individual interaction is assigned to each object following its 
previous status (Interaction). A nonintrusive projection 
technique is applied in this step to guarantee that all 
interactions are drawn using the correct colors. Up to this 
point, all calculations are performed using camera 
coordinates. Finally, another calibration is performed to 
convert every interactive projection to projector coordinates 
(Calibration). As noted in fig. 2, the detection step and the 
interaction step are performed using different algorithms 
(depending on the application), so a detailed explanation of 
them is not considered here. The following sections discuss 
the calibration, tracking and nonintrusive projection used in 
our system. 

3.1 Real-time pro-cam geometric calibration using a 
motion sensor 

This section describes geometric calibration between a 
projector and a camera using a motion sensor. A projector, 
camera and motion sensor are fixed together so that their 
relative positions and orientations cannot be changed. Two tilt 
sensors fixed to a projector were first proposed in [24]. 
Acquiring the tilt angles from both sensors in real time allows 
the correct estimation of the world horizontal and vertical 
directions without using markers. Dao et al. [9] extended the 
sensor-based idea to an accelerometer combined with a digital 
compass. Their system measures the inclined angle of a 
projector directly in both vertical and horizontal axes, and 
then creates an interactive game by using a real-time keystone 
correction feature. 
 
A sensor eliminates the need for markers but still allows a 
single self-contained device, so we decided to apply the 
sensor approach to our system. Our purpose is to obtain 
updated transformations between camera coordinates and 
projector coordinates in real time. A real-time keystone 
correction is not applied here, but it can be performed if 
required. 
 
In this paper, a NEC/TOKIN MDP-A3U9S 3D motion sensor 
is used with a data update rate of 125 Hz. The relative pitch 

and roll angles are calculated from three acceleration values 
read from the sensor. Setting the reference angles is simple: 
the projector is moved until the images appear rectangular on 
a surface, and then a key or button is pressed. The reference 
can be reset whenever significant errors occur in the 
calibration. Five consecutive samples of the 3D accelerations 
acquired from the sensor are averaged in real time before 
being used to compute the relative pitch and roll angles. 
Averaging adds a delay to the calibration but is recommended 
for smoother calibration. 
 
This approach requires offline calibration. However, the 
calibration data are compatible with the system if there is no 
change in the relative positions or orientations of the three 
devices. Suppose that the offline calibration is done by N 
sample images captured from the camera and all sample 
images share a set of n points to be calibrated. A set of 
calibration data provided by one sample image is written as 

),,,,,,,,( 2211 nn yxyxyxrp L . Let p and r refer to the relative 
pitch and roll angles; ),( ii yx  represents the 2D coordinates 

of an thi observed point in the sample image. For N sample 
images captured from different angles and orientations, we 
have: 
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An adjustment matrix ( β ) is obtained by using linear least 
squares to solve: 

( ) BAAA TT =β .                  (1) 
At any timeτ during online calibration, ),( ii yx is updated by 
Equation (2) using the relative pitch and roll angles calculated 
as explained earlier. 
     [ ] [ ]βττττττττ 1,,,,,,,, )()()()()(2)(2)(1)(1 rpyxyxyx nn =L      (2) 
Following the above explanation, the first calibration step 
written in fig. 2 is performed. The system is able to locate the 
projection area appearing inside a camera image, even though 
the position and orientation of a projector (relative to a 
surface) are not known. 
 
To achieve a more precise calibration, n compensation values 
are computed at startup for each ),( ii yx . The compensation 
values are obtained by finding differences between 
each ),( ii yx pair computed by our sensor approach and its 
corresponding ),( ii yx pair actually found on a camera image. 
During online calibration, the compensation values calculated 
since startup are added to those values calculated from the 
sensor approach. Our experiments showed that this 
compensation actually increased accuracy in the calibration 
using very few additional computations. 
 
The other calibration step shown in fig. 2 is performed by 
applying perspective transform, as proposed in [27]. We 

 
Figure 2: Overall procedural flow. 
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chose this approach instead of the full calibration approach 
proposed in [24] because of its lighter computational load. 
The transformation from camera coordinates to projector 
coordinates is updated in real time by referring to ),( ii yx  in 
Equation (2). After a response image is generated in camera 
coordinates (i.e., after the Interaction step in fig. 2), it is 
warped to projector coordinates. In this way, when the 
response image (in projector coordinates) is projected, the 
geometry appears on the surface as required. Note that when 
using this calibration approach, a surface must be planar but 
may be slanted. 

3.2 Improved multiple-target tracking using particle 
filters 

As mentioned previously, our tracking is based on an 
approach proposed in [20] with modifications suited to 
image-based tracking. An input to our tracker is a single-
channel binary image created by the Detection step shown in 
fig. 2, with white contours inside the input image referring to 
target objects to be tracked. The maximum number of target 
objects varies in time according to the detected number of 
targets. Hence, computations are incurred only where 
necessary. The outputs from our tracker are the clustering 
particles and object identification. An attractive aspect of this 
approach is that it performs a consistency check. Moreover, it 
offers strategies to avoid premature initialization or 
finalization that may arise from misdetection in a few input 
images. 
 
Migration from the approach of [20] to our approach is 
straightforward. However, while the approach of Ng et al. 
measures and stores single values from a sensor, our approach 
stores sets of points that form the contours found in the input 
image. Two major changes were made to the deterministic 
clustering algorithm. 
 
First, we introduce a new approach to compute a normalized 
distance between two contours found at different times. The 
normalized distance is an important key to judge the accuracy 
of the clustering algorithm and must be defined carefully to 
suit each data format. Our experiments found a combination 
of three representative values that best distinguish whether 
two contours originate from the same target object. As shown 
in fig. 3, the representative values are the intersection area, 
the approximate minimum distance, and the absolute 
difference between the sizes of the contour. 

Two contours from different times are most likely to be 
clustered together if the intersection is large and both the 
approximate minimum distance and the absolute difference 
between the sizes of the contour are small. The normalized 
distance is calculated by a weighted average approach. In the 
current implementation, weights of 3, 2 and 1 are used for the 
intersection, the minimum distance and the absolute 
difference of sizes, respectively. This approach worked well 
in both simulation and real-time camera capturing 
experiments, and was able to deal with both static objects and 
dynamic objects whose positions or shapes changed over 
time. Considering that changes to an object do not increase 
sharply in sequential capturing, we set a threshold for the 
normalized distance to consider whether to group two 
contours. 
 
Second, we introduce a new clustering iteration. The 
successive scan approach proposed by [20] is compatible with 
our proposed normalized distance. However, computational 
loads were significantly higher than for other calculations in 
tracking. The )( 2ηΘ iteration, where η  is the number of 
contours detected concurrently, is not good for interactive 
applications, especially those using image processing. We 
closely examined related factors and tried to make this scan 
faster. Dynamic data structures were used to store all possible 
combinations of the normalized distance. We hoped that 
reducing the number of calculations in the latter iterations 
might increase the overall speed. Unfortunately, the cost of 
dynamic data structures was too high with large datasets. 
Consequently, the overall speed barely increased. 
 
Later, we developed an approach that can perform clustering 
in )(ηΘ . The overall speed increases remarkably in this 
approach. Additional data storage, using a linked list of linked 
lists, is illustrated in fig. 4. Each element of the outer linked 
list contains three pieces of information about its 
corresponding inner linked list: the number of elements, a 
pointer to the first element, and a pointer to the last element. 
The inner chain formed by one inner linked list represents a 
trajectory of one object being tracked by the tracker. 
 

Using this data storage method, clustering starts by 
eliminating inner linked list elements whose corresponding 
contour is no longer stored in the tracker’s buffer. This is 

 
 
Figure 3: Three representative values for computing the 
normalized distance between two contours. 

    
 

Figure 4: Linked list of linked lists for fast clustering. 
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achieved by checking the first element of all inner linked lists. 
An element is removed from its inner linked list if its absolute 
time is too old compared with the current absolute time and 
the size of the tracker’s buffer. Because elements in each 
inner linked list are ordered by a unique absolute time, there 
is no need to check the rest of the inner linked list elements. 
After elimination, every contour found in the current input 
image is processed. The normalized distances are calculated 
between each new input contour and the contours found at the 
end of all inner linked lists. If any input contour is considered 
to belong to an existing inner chain, it is added to the end of 
that chain. Otherwise, a new outer linked list element is 
initialized with an inner linked list containing that input 
contour. 
 
A comparison between the original successive scan approach 
and our approach is shown in fig. 5. All experiments shared 
the same set of 200 continuous input images; other 
parameters except the buffer size were fixed. Apparently, the 
successive scan approach spent more time calculating when 
the buffer size grew larger, while the computational cost of 
our approach barely increased, even though the buffer became 
four times larger. 
 

By applying these two modifications, we are able to cluster 
all contours available in the buffer. A region of interest (ROI) 
is created for each inner chain if and only if the number of 
contours in that chain reaches a persistent threshold. Finally, 
we continue the ROI classification as explained in [20]. 
Particle filtering is performed inside each individual ROI 
using the propagation function 

Vpp tt += ' ,   (3) 

where tp' and tp refer to 2D coordinates of a particle before 
and after propagation, and V is a random velocity set from our 
experiment. In this way, we are able to identify and track an 
unknown number of objects efficiently using particle filters. 
Note that all tracks share the same number of particles in our 
implementation. 

3.3 Nonintrusive projection 

As mentioned in the introduction, it is important that a real- 

time environment analysis not have any interference from any 
projected contents. We apply an approach proposed in [8] for 
three reasons: it requires no internal change to a projector or 
camera, it can apply to any off-the-shelf DLP projector, and it 
supports embedded variable light patterns in the future 
without further hardware modifications. 
 
The chosen approach requires a DLP projector and a camera 
with an external trigger feature. Synchronization between the 
projector and the camera is necessary and is performed by 
tapping the vertical sync signal (5 V, 60 Hz) from the 
computer to the projector. By using the tapped signal as a 
trigger, our camera remains synchronized to the projector. 
The synchronization setup is shown in fig. 6. Because our 
DLP projector uses a VGA input, a VGA splitter is used to 
split the input signal. 

The following devices were used for the pro-cam 
synchronization: a HP MP2225 DLP projector with D-sub 
connector, a Dragonfly Express camera connecting through a 
FireWire 800 port (aka. IEEE1394B port), and an ELECOM 
VSP-A2 VGA splitter. The camera is equipped with a 
Tamron 13VM308AS lens. 
 
To understand the overall characteristics of the color wheels 
inside our DLP projector, we projected single-color images 
(corresponding to the colors of each available color wheel of 
the projector) at maximum intensity. Fig. 7 was created by 
allowing the synchronized camera to sense those projected 
colors with different synchronization delay times. Note that 
our DLP projector has five color wheels: red, yellow, green, 
white and blue. The extra yellow wheel offers richer reds and 
brighter yellows in projection. 

To achieve this technique, the shutter of the camera is set to 
open for only 0.3 ms, which is too fast for the camera to see 

    
 
Figure 5: Comparison between the original successive 
scan approach and our linked list of linked lists approach. 

 
 

Figure 6: Projector-camera synchronization. 

 
 

Figure 7: Color-wheel sequence of the HP MP2225. 
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things properly unless there is light from the projector (see fig. 
8-B). Hence, we need to illuminate the environment while 
projecting nonintrusive interactive responses. From fig. 7, we 
selected red and white with a 1 ms delay to perform 
nonintrusive projection. We used both colors at their 
maximum intensity; yellow was not chosen to avoid possible 
interdependent color channels. When a projected image 
contains only two selected colors, the camera that is 
synchronized with a 1 ms delay will see an environment 
completely lit up with red light, as depicted in fig. 8-C. Note 
that the intensity of fig. 8-B was enhanced to allow the 
environment to be seen here. 

3.4 Proofs of concept 

To prove the proposed framework, we implemented two basic 
programs. Detection (step 2 of fig. 2) is performed using the 
2D Gabor filter [11], which is known to be useful in 
segregating textural regions. Input to the detection is a 
captured grayscale image, which is then convolved with the 
2D Gabor function 

      ⎟
⎠
⎞

⎜
⎝
⎛ += +−

Θ ϕ
λ

πσγ
ϕλ

'2cos),( )2/)''((
,,

2222 xeyxG yx ,       (4) 

where 
               Θ+Θ−=Θ+Θ= cossin'sincos' yxyyxx  
The angleΘ is set to zero in our programs. For uniform planar 
surfaces, the area whose Gabor filter response magnitude is 
low will be considered the target object. In other words, the 
target objects for our programs are textural objects or surfaces 
that have either nonuniform reflections or discontinuities. 
 
In the first program, we randomly assigned three different 
animations to each target object. Animations were attached to 
the corresponding object and followed them even if the object 
or the projector was moving. The purpose of using animation 
is to demonstrate the continuity of the interaction provided for 
each object. The second program provided the same 
animations as the first program, and a clock was drawn in an 

object-free location. The clock always appeared in the largest 
object-free area using the dynamic target area approach 
discussed in [26]. The location and size of the clock were 
adjusted adaptively to fit with the current object-free area, 
which may change dynamically because of movements of 
either the projector or the objects. 
 
Fig. 9 shows these programs in action on an actual surface. 
These images were shot from a separate camera in order to 
show how a human actually saw the projected interactions on 
a surface. Using the proposed framework, objects were 
initialized and finalized automatically when they entered or 
left the projection area. Each object was tracked separately in 
real time so that its corresponding animation was updated 
correctly in a continuous manner. Because each object has a 
unique label in the proposed framework, a series of 
interactions can be assigned to objects in a specific or random 
order. This should be useful for creating an interactive game, 
adding a story, or for virtual communication among objects 
(both physical and virtual). 

4 Experimental results & evaluations 

In this section, we discuss the experiments conducted to 
evaluate the accuracy and speed of the proposed framework. 
All experiments were performed using a Dell Inspiron 1150 
Mobile Intel® Pentium® 4 laptop with a processor running at 
2.80 GHz. 

4.1 Accuracy 

We measured the accuracy of the pro-cam geometric 
calibration by comparing a ground truth projection area to a 
program-generated projection area. The four corners of the 
projection area were used as calibrated points (i.e. n = 4 in 
Equation (2)). Two measurements were used, as illustrated in 
fig. 10: a percentage of the overlapped area and a mean 
Euclidean distance. Experiments were conducted on three 
different approaches: our calibration without compensation, 
our calibration with compensation, and the static projection. 
The last approach assumed that the projection area was 
unchanged since startup, and is added here for reference. We 
performed an experiment using 20 test points and plotted the 
graphs shown in fig. 10. For one test point, two measurement 
values were computed for the three approaches using eight 
different calibration data lengths (N). The image resolution 
was set to 640×480 pixels in the experiment. 
 
From fig. 10, it is obvious that our proposed technique with 

 
 
Figure 8: (A) is an environment seen by a camera with 
normal settings. (B) is the environment (A) seen by the 
synchronized camera. (C) is the environment (A) seen by 
the synchronized camera when the image (D) is being 
projected from the DLP projector. 

 
Figure 9: Snapshots of the test environment (A), the first 
program (B), and the second program (C). 
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compensation gave the best geometric calibration in both 
measurements. The number of sensor-calibration data (N) 
showed no significant impact on accuracy. However, the 
static projection approach did better than our technique 
without compensation. A separate experiment using a 
different set of pro-cam showed that we could achieve high-
precision calibration (a maximum of 12 pixels mean 

Euclidean distance and minimum of 91% mean overlap area) 
without compensation by fixing a projector and a camera so 
their optical axes were as close to coaxial as possible. 
Nevertheless, the approach with compensation still offered 
better calibration, according to the separate experiment. 
 
The accuracy of the multiple-target tracking was tested using 

 
 

 
Figure 10: The number of calibration data (N) vs accuracy of pro-cam geometric calibration of three approaches. (Left) 
shows an overlap percentage between a ground truth and each approach. (Right) shows a mean Euclidean distance 
between a ground truth and each approach. 

 

 
 
Figure 11: Accuracy of tracking vs size of the tracker’s buffer (left) and the number of particles per track (middle). 
(Right) shows trajectory and ROI created by the tracker: (top) buffer = 20 and particles = 200; (bottom) buffer = 4 and 
particles = 600. 
 

 
 

Figure 12: Speed of multiple-target tracking vs the number of target objects (left) and image resolution (right). 
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200 simulated images that showed one square (100×100 
pixels) moving with constant velocity in both the X-axis and 
the Y-axis. Resolution of the images was fixed at 640×480 
pixels. If the detection was accomplished and there was only 
one target object tracked, two measurements ( 1m and 2m ) 
were applied in the experiments: the Euclidean distance 
between a centroid of the square and a centroid of particles, 
and a percentage of the overlap area between the square and a 
rectangle bounding all particles. We observed the impact of 
two factors upon tracking accuracies, as shown in fig. 11. The 
first factor is the size of the tracker’s buffer (fig. 11-left) and 
the second factor is the number of particles per track (fig. 11-
middle). 
 
From fig. 11-left and fig. 11-middle, both factors show a 
slight impact on tracking accuracies. In the middle image, 50 
particles were not sufficient to track the 100×100 pixels 
square. Therefore, the 1m value increased significantly and 
the 2m value dropped sharply compared with the remainder of 
the middle image. This is the normal behavior of particle 
filters, where the number of particles must be assigned 
carefully to ensure full coverage of the object. Fig. 11-right 
shows the trajectory of tracking and the ROI in two different 
settings. Note that the ROI is created by the tracker and is not 
the bounding rectangle used to compute 2m . 
 
For the nonintrusive projection, we project images containing 
only two chosen colors. Therefore, the synchronized camera 
always sees projected images as a completely red image (as 
shown in fig. 8-C). 

4.2 Speed 

The proposed pro-cam calibration includes two steps, as 
described earlier. While the first step, which locates the 
projection area inside a captured image, took 20 ms to 
calculate Equation (2), the compensation added little 
computational load. The second step, which refers to the 
transformation update and image warping, required 40 ms to 
create a 640×480 pixels projected image in projector 
coordinates. 
 
We closely investigated five factors that might affect the 
speed of the proposed tracking. These factors include the 
number of target objects (5), the size of the tracker’s buffer 
(4), the number of particles per track (200), the image 
resolution (640×480 pixels) and the size of the tracked object 
(118×118 pixels). The numbers given here in brackets are the 
default values for that factor. Five experiments were 
conducted for each factor using 200 simulated images that 
represented perfect detection results for static squares. 
 
From the experiments, two factors (the number of target 
objects and the image resolution) showed significant effects 
on tracking speed, as shown in fig. 12. The other three factors 
contributed less than 5 ms per frame to the average 
computational times. The experiment on the size of the 

tracker’s buffer is shown in fig. 5. 
 
The nonintrusive projection has no computational cost in this 
implementation. This is because the two nonintrusive colors 
are chosen offline, and the projected image is created by 
using one color as the background color and the other color as 
the content color. 

5 Conclusion and future work 

In this paper, we investigated three fundamental requirements 
of a portable projector that is extended from conventional 
controller-centered interactions to object-centered 
interactions. First, a real-time pro-cam geometric calibration 
is performed using a motion sensor to achieve a single self-
contained device. Second, multiple-target tracking is 
introduced using particle filters to keep track of objects whose 
appearance and disappearance are unknown. The tracking 
allows projective interactions among physical and virtual 
objects. In addition, each physical object is associated with its 
individual interaction according to the identification feature 
of the tracking. Finally, we apply a hardware-based approach 
using a DLP projector so that projected content does not 
intrude on the environment analysis. 
 
The object-centered interaction concept proposed in this 
paper will help register physical objects in the virtual world. 
Virtual information projected by a projector is able to appear 
on and in response to physical objects (if any) in the most 
appropriate manner. In the future, we plan to investigate a 
high-precision detection algorithm that benefits from the 
proposed framework and offers a robust portable system. 
Furthermore, we are interested in adding a classification to 
the framework in order to interact with objects in a 
meaningful manner. 
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